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Abstract

Point Clouds data has been increasingly used for various
safety-critical computer vision applications such as driver
assistance systems. Thus, its robustness against both ad-
versarial attacks and corrupted data is crucial. This pa-
per investigates the relationship between the two robustness
in point cloud classifier models like PointNet and Dynamic
Graph CNN(DGCNN). In the process, we analyze the re-
lationship between corruption and adversarial robustness
to establish a stronger connection between the two robust-
ness metrics than it has been studied before. Next, our key
contribution is the development and validation of a new ad-
versarial training method using Auto-PGD attacks, which
diverges from the traditional PGD approach. Our findings
indicate that APGD has the potential to achieve both im-
proved corruption and adversarial robustness. Through our
analysis, we encourage further research in APGD-based
adversarial training and highlight the importance of simul-
taneously addressing both corruption and adversarial ro-
bustness, thus paving the way for more reliable point cloud
data analysis in real-world applications.

1. Introduction

1.1. Background

Point cloud data, characterized by an unordered list of
points, plays a vital role in numerous vision-based applica-
tions like autonomous driving and robotics. Further devel-
opments in classifiers for point cloud data is crucial, espe-
cially in safety-critical applications such as advanced driver
assistance systems (ADAS) where the model distinguishes
pedestrians from vehicles.

Recent advances in point cloud processing, particularly
models like PointNet [3] and its successors, PointNet++ [2]
and PointNeXt [9], have enabled the direct processing of
point clouds, thereby bypassing the need for intensive pre-
processing like voxelization. This evolution marked a sig-
nificant leap in handling unstructured point cloud data ef-
ficiently. Moreover, the adaptation of Transformer models,

Figure 1. Point cloud object bunny (left) and voxelized object
bunny (right) [1]

primarily known for their success in Natural Language Pro-
cessing (NLP) and Computer Vision (CV), to point cloud
data [6], has opened new avenues in point cloud analysis.

Despite these advancements, the integrity of point cloud
classifiers in the face of data corruption and adversarial at-
tacks is still an open question. A comprehensive survey
paper by Sun et al. [17] highlighted the potential of ad-
versarial training, particularly using Projected Gradient De-
scent (PGD), in enhancing the robustness against corrupted
data. They found that while adversarial training improved
resilience against data similar to adversarial examples, it did
not conclusively outperform other data augmentation tech-
niques in improving corruption robustness. This calls for
further exploration into methods that simultaneously boost
both adversarial and corruption robustness in point cloud
classifiers.

1.2. Dataset

ModelNet40, part of the larger ModelNet collection
[21], includes 3D computer-aided design (CAD) models
across 40 object categories. In our study, we utilize
ModelNet40-C for testing and training, a specialized ver-
sion of ModelNet40 designed to assess the robustness of
3D point cloud recognition systems against various corrup-
tions. ModelNet40-C [17], developed by Sun et al. [17],
extends ModelNet40 by introducing 15 types of corruption
across 5 severity levels, including issues related to density,
noise, and transformation. The ModelNet40-C dataset com-
prises 185,000 unique point clouds, offering a comprehen-



sive view of model performance under various corrupted
conditions. See Fig. 2 for the types of corruptions included
in this dataset.

While ModelNet40-C is used to evaluate corruption ro-
bustness, we will use the ModelNet40 dataset for evaluat-
ing adversarial robustness. By using the clean ModelNet40
dataset, we generate adversarial examples, which we then
can use to train or test our models.

Figure 2. 3D point cloud model of an airplane subjected to various
types of corruptions pulled from the ModelNet40-C dataset [17]

1.3. Contributions

Our research aims to take a step towards discovering a
methodology to improve the corruption and adversarial ro-
bustness of point cloud models. In our study, we first revisit
and deepen our understanding of the relationship between
corruption robustness and adversarial robustness in point
cloud models. By investing these aspects, our study seeks to
provide new insights into the underlying dynamics govern-
ing robustness in point cloud classifiers. We then explore
the potential of Auto-PGD(APGD) attacks as a method for
defense through adversarial training, which diverges from
the traditional method using PGD.

Specifically, our contributions are as follows:

• Offering detailed insight into the relationship between
corruption and adversarial robustness.

• Demonstrating the potential of APGD by training our
own DGCNN model, which outperformed all other pre-
trained DGCNN models with various data-augmentation
techniques.

2. Related Works
2.1. Point Clouds

Point Cloud data represents three-dimensional geometric
information, typically generated via 3D scanning technolo-
gies. This data is crucial for various domains like computa-

tional design, robot navigation, and driving assistance sys-
tems. Deep Neural Networks (DNNs) are employed to per-
form tasks like classification, object detection, and semantic
segmentation on point clouds. Previously, handling point
clouds with DNNs was challenging due to their unstruc-
tured nature, often requiring voxelization for data prepro-
cessing. However, introduced in 2016, PointNet [3] enabled
direct processing of point clouds without voxelization, thus
eliminating the need for heavy pre-processing. Following
PointNet, models like PointNet++ [2] and PointNeXt [9]
emerged, improving upon the original model by introducing
hierarchical network structures and refined training strate-
gies.

Recently, more frameworks like Point Cloud Transform-
ers [6] have developed, applying Transformer models, ini-
tially used in Natural Language Processing (NLP). On an-
other front, PointMLP [15] also have been introduced as a
more straightforward way to classify point clouds by reduc-
ing the need for extracting local geometries.

2.2. Point Cloud Corruption

Significant research regarding corrupted point clouds
has been conducted by Li et al. [14], which addresses the
issue that LiDAR detectors are vulnerable to real-world
corruptions like rain, snow, and sensor noise despite high
accuracy in standardized benchmarks. To tackle this, the
authors propose physical-aware simulation methods to
generate degraded point clouds under various real-world
corruptions. They construct a benchmark containing over
1.1 million examples covering 7,481 scenes, 25 corruption
types, and 6 severities.

More recently, ModelNet40-C [17] has been developed
as another way to benchmark corruption robustness by pro-
viding a complete dataset of corrupted point clouds, as we
have described earlier. The authors of ModelNet40-C have
also publicized all of their pre-trained models that were used
in their study to evaluate corruption robustness. By do-
ing so, they encourage external researchers to leverage their
dataset and pre-trained models in order to further study cor-
ruption robustness.

2.3. Adversarial Attacks and Adversarial Training

One of the most common methods to attack a model
is the Projected Gradient Descent (PGD), which was in-
troduced by Madry et al [13]. Evasion attacks like PGD
purposefully perturbs existing data in order to create a data
point that resembles the original data but is misclassified by
the model. In face of these threats, adversarial training is
a crucial method for assessing the vulnerabilities of deep
learning algorithms. This approach has its roots in the same
paper by Madry et al [13], where a model is trained using
perturbed data instead of the original, clean data.



Defense algorithms such as adversarial training has been
an increasing research topic in recent years, which calls for
the need for a standardized method of evaluating adversar-
ial robustness metrics. Croce and Hein introduced a tool
called AutoAttack [5], which provides a variety of attacks
that can be used to benchmark a model’s robustness to at-
tacks. These attacks in AutoAttack require no parameters
to run, removing any biases induced by human evaluation
methods. Thus, it provides a universal method to test any
model for adversarial robustness.
Furthermore, AutoAttack introduces Auto-PGD (APGD) as
one of its attack methodologies. While APGD provides a
more rigorous method to find an adversarial example com-
pared to PGD, it has not been used in the context of ad-
versarial training to the best of our knowledge. Thus, we
plan to explore the use of APGD as a method of adversarial
training in the context of point cloud classifiers through our
work.

While many research efforts in adversarial attacks and
defense focus on image classification, such as in AutoAt-
tack, there have been efforts to investigate adversarial ro-
bustness in the domain of point cloud classifiers as well.
The study conducted by Naderi et al. [10] provides a broad
survey on attacks and defenses for point cloud classifiers,
which provides us a good foundation for our study.

3. Methods
In this section, we discuss our methods of achieving

our two goals: evaluating the correlation of adversarial ro-
bustness with corruption robustness and using Auto-PGD
to adversarially train a point cloud classifier method. We
will do do so by leveraging the frameworks provided by
ModelNet40-C [17] and AutoAttack [5]. ModelNet40-C
contains a zoo of pre-trained point cloud classifiers such as
PointNet [3], PointNet++ [2], DGCNN [18], RSCNN [12],
PCT [8], and SimplView [7] with various data augmentation
strategies including PointCutMix-R, PointCutMix-K [20],
PointMixup [4], RSMix [11], and Projected Gradient De-
scent(PGD) [16]. We specifically evaluate DGCNN and
PointNet with various data augmentation in our study in the
interest of time. Given these models, we use AutoAttack
to evaluate the adversarial robustness and compare its re-
sults with the corruption robustness evaluated through Mod-
elNet40c. Then we will use Auto-PGD(APGD), introduced
by AutoAttack, as an alternative adversarial training strat-
egy to train these point cloud classifers in contrast to the
traditional PGD method.

3.1. Adversarial Attacks

In order to attack a model, we first need to specify a
threat model, also known as an attack model. A threat
model specifies the type of attack an attacker uses to pur-
posefully mis-classify a data point x. Precisely, we define

Figure 3. Adversarial examples of a chair using PGD [16]

the allowed perturbation on a given input point x. Com-
monly, the allowed perturbation is the space in the ℓ∞ ball
x with a maximum perturbation distance of ϵ. We choose ϵ
such that all perturbed x inside the ℓ∞ ball semantically rep-
resents X. In case of a point cloud classifier, a point cloud
x before and after applying any perturbation within the ℓ∞-
ball should look similar geometrically to a human eye (see
Fig. 3). We use a similar notation as Madry et al. [13] where
S is the set of all allowed perturbations in the ℓ∞ ball. Now,
we call a perturbed x as xadv = x+ δ, where δ ∈ S.

Within this threat model, AutoAttack performs three
white-box attacks (APGD, Targeted-APGD, and FAB) and
one black-box attack (Square attack). White-box attacks
have full access to information of the model, while black-
box attacks do not use any prior knowledge of a par-
ticular model. In our study, we utilize the APGD and
Targeted-APGD(APGD-T) because square attack and FAB
are image-specific attacks that could not be used for point
clouds. In these white-box attacks, we begin with a clean,
in-distribution data x. AutoAttack finds a δ ∈ S to find
an xadv that successfully fools the classifier. In the case of
APGD, AutoAttack starts at a random point in the ℓ∞-ball.
It then performs iterations of projected gradient descent us-
ing a decaying learning rate α to find an xadv that maxi-
mizes its loss function the most. It then performs several
more random restarts in the same ℓ∞-ball and repeats the
same process to find the xadv that has the highest loss. If
the resulting xadv fools the classifier correctly, the attack
was successful for this particular data point x.

Beyond defining the threat model, AutoAttack is a
parameter-free evaluation tool that allows us to easily mea-
sure the adversarial robustness of different models. Thus,
we can use AutoAttack as our method to measure the ad-
versarial robustness of point cloud classifiers.

3.2. Evaluating Adversarial Robustness

As suggested by Sun et. al [16], we use a threat model
of ℓ∞ norm with ϵ = 0.05 to generate adversarial exam-
ples. Specifying this threat model, we can now use Au-
toAttack. In particular, we created a script that parses
ModelNet40(non-corrupted) point cloud data into a list,
load pre-trained models from the ModelNet40-C zoo, and
run AutoAttack to generate the adversarial examples within



Figure 4. Best(highest) cross-entropy loss(top) and accu-
racy(bottom) obtained as a function of iterations for the
TRADES model [19] for PGD with momentum(dotted lines) and
APGD(solid lines) on MNIST and CIFAR dataset. [5]

the specified threat model. AutoAttack then runs the model
with perturbed data to see if it successfully fools the clas-
sifier. Finally, AutoAttack reports how many of the in-
put points were successfully perturbed to fool the classifier.
We will collect this metric of adversarial robustness and
compare it to their corruption robustness of various models
that were already evaluated by the authors of ModelNet40-
C. All in all, moost of our technical work in this section
comprised mostly of creating a script to run AutoAttack
tests and making sure that ModelNet40-C and AutoAttack
frameworks were consistent with each other. Most notably,
we implemented our own version of AutoAttack for point
cloud classifiers, although AutoAttack was originally cre-
ated for image classification.

3.3. APGD to Train Models

As an extension to our efforts of finding the relationship
between adversarial and corruption robustness, we explored
an alternative adversarial training method to evaluate its ef-
fect on the two robustness metrics. Specifically, we adver-
sarially trained the point cloud classifiers using APGD.
The role of APGD in our training process is best explained
through the objective function of adversarial training. As
defined by Madry et al [13], the objective function is:

minθρ(θ), where ρ(θ) = E(x,y)∼D[maxδ∈SL(θ, x+ δ, y)]

This is a saddle optimization problem where the inner max-
imization problem finds the perturbation that produces the
highest loss for each data point, while the outer minimiza-

tion problem finds the weights and parameters of the net-
work that minimize the expected adversarial loss. To solve
the inner maximization problem, the traditional approach
has been to use PGD. For point cloud classifiers, the adver-
sarially trained model in ModelNet40-C has also employed
PGD. However, using APGD in adversarial training has not
been common, and we explore this in the domain of point
cloud classifiers.

3.4. APGD vs PGD

Our motivation of using APGD in adversarial training is
as follows. APGD is a relatively recent attack designed by
the creators of AutoAttack [5] as an alternative to the tradi-
tional PGD attack. As mentioned earlier, both APGD and
PGD search for a perturbation within an ℓ∞-ball around an
input point x to find an adversarial example that maximizes
its loss function. Both attacks begin at a random point and
apply projected gradient descent to a direction that maxi-
mizes a loss function. The key difference between APGD
and PGD is that APGD automatically changes its step size
α, which is the distance of travel within the ℓ∞-ball between
each iteration. For each step-size APGD keeps track of the
perturbation δ1 that generated the largest loss, and it restarts
its maximization search at that point δ1 when it decreases
its step size. The phase when APGD has a big step size is
called the exploratory phase that searches for a general max-
imum, while it gradually moves on to an exploitation phase
with a smaller step size. Fig. 4 shows a concrete example of
APGD outperforming standard PGD attacks in finding bet-
ter adversarial examples. Croce and Hein [5] conclude that
APGD is a better attack methodology in general. Thus, we
believe APGD could improve the adversarial robustness of
point cloud classifiers, while also improving the corruption
classifiers.

3.5. Evaluation Metrics

For corruption robustness metric, we will use the Error
Rate(ER), which is used in the ModelNet40-C paper. This
is the percentage of corrupted or adversarial point clouds
that were mis-classified by a classifier. Though accuracy is
more conventional as the metric for adversarial robustness,
we will also use the ER for adversarial robustness for con-
sistency. Precisely, the ER is calculated by:

ER = 1−
∑|D|

j=1 1cj==yj

|D|

where D is either a clean, corrupted, or adversarial dataset
and cj are the predicted labels of the jth input in D.

We note ERAdv as the error rate for adversarial data,
ERCR as the error rate for corrupt data, and ERCL as the
error rate for clean data.



4. Experiments
In this section, we describe our evaluation on different

models and provide an analysis. First, we examine the ef-
fectiveness of different data augmentation techniques for
adversarial robustness and its relationship to corruption ro-
bustness. Moreover, we benchmark both corruption and
adversarial robustness for different models including our
model using adversarial training with APGD. Our result
highlights the importance of both corruption and adversar-
ial robustness metrics and encourages further research in
this area, as our custom model shows potential for obtain-
ing high robustness for all metrics.

4.1. Comparing Adversarial and Corruption Ro-
bustness

As described in 3.2, we ran our version of AutoAt-
tack for point clouds against the models provided by the
ModelNet40-C model zoo(DGCNN and PointNet). By do-
ing so, we aimed to obtain a more clear vision of the rela-
tionship, if any, between the two robustness metrics. For
each model, we obtain a ERadv , which is the error rate for
adversarial data. Then, we plotted ERadv in comparison to
the error rate against corruption(ERCR) which was deter-
mined by Sun et al [17], as seen in Figure 5.

• Insight 1: Corruption Robustness does not imply Adver-
sarial Robustness

From Figure 5, we can see that most models, despite
their low error rate for corrupted data, have a very high error
rate close to 100% for adversarial data. However, models
that were adversarially trained using PGD showed relatively
low ERadv even though their ERCR is comparable to other
models with different data augmentation techniques. Thus,
we can conclude their is no obvious relationship between
adversarial and corruption robustness. Specifically, a high
corruption robustness does not imply a high adversarial ro-
bustness.

Our initial intuition was that high corruption robustness
would indicate adversarial robustness because of their se-
mantic similarities. Particularly, some corruption types
such as added noise were semantically similar to adversar-
ially perturbed data. Thus, we speculated that adversarial
data was a subset of corrupted data, and thus high corrup-
tion robustness would imply a lower adversarial robustness.

From our data, we found that our intuition was wrong
possibly (1) because the threat model limits perturbed mod-
els to be much similar to the original models or (2) because
the adversarial attacks deliberately target to increase the loss
of the model to induce mis-classification, which arguably is
much worse than simply corrupted data. This makes sense
because, as stated by Croce et. al. in [5], adversarial train-
ing is one of the very few ways to create an adversarially

Figure 5. Comparison between Adversarial Error and Corruption
Error Rate for DGCNN and Pointnet models using various data
augmentation such as PGD, Cutmix-R etc.

robust model. Though the study by Croce et. al. was
done under image classifications, it is consistent with our
observations with point cloud classifiers - simply applying
the various data augemntations such as PointCutMix-R and
PointMixUp does not improve adversarial robustness even
if it increases corruption robustness.

4.2. Adversarially Training a model using APGD

We used APGD for adversarial training models as an al-
ternative to the traditional PGD, which was used by Sun et.
al. [17] to improve both adversarial and corruption robust-
ness. Between DGCNN and PointNet, we decided to apply
APGD to DGCNN because DGCNN with PGD performed
better in all robustness metrics against clean, adversarial,
and corrupted data than PointNet with PGD.

Model Setup: In the interest of time and resources, we
trained the model using APGD with an iteration number
of 7 and for 50 epochs. The iteration number of APGD
is the number of steps taken in the ℓ∞-ball to generate an
adversary. While APGD will find a better adversary with
larger iterations, typically around 100, training the models
will take much more time. However, since APGD will per-
form better with larger iterations, we expect the model with
more APGD iterations to have higher adversarial robust-
ness. There is a tradeoff between performance and time,
and we chose 7 because it was the number of steps used for
the pre-trained DGCNN model using PGD. Similarily, for
the number of epochs, we reduced it by a lot because we
lacked time and resources - typically, the pre-trained mod-
els from the ModelNet40-C are trained for 300 epochs.

Results: Figure 6 shows the validation and training ac-
curacy of DGCNN models through epochs in our adversar-
ial training using APGD. To clarify, both the validation and
training dataset are from ModelNet40. For our main model
with 7 APGD iterations and 50 epochs, we reach a valida-
tion accuracy of 89.3%. We also observe that the training



Figure 6. Training and Validation accuracy of DGCNN models
using APGD with 15 iterations and 7 iterations over epochs. As
a reference, we also have accuracies of a model trained with PGD
for comparison. Training was cut short due to the lack of time and
resources.

accuracy is lower than the validation accuracy, which can
be explained by how our model performs dropout during
training.

Table 1 shows the performance of DGCNN and Point-
Net models with different data augmentation techniques.
From left to right the table displays the model name, error
rate(ER) for clean data, ER for corrupted data, ER for
different subtypes of corrupted data (Density, Noise, Trans-
formation), ER for adversarial attacks, and the average of
the clean, corrupted, adversarial ER. Precisely,

ERCR =
1

3
(ERDensity + ERNoise + ERTrans.)

Avg. ER =
1

3
(ERCL + ERCR + ERAdv.)

Our results showed that our model achieved the lowest Avg.
ER and ERadv .

• Insight 2: No one specific robustness metric gives a com-
prehensive view on the model performance.

As shown by Table 1, the pre-trained models that are robust
against corruption are not robust against adversarial data.
Thus, claiming that these models are robust simply based
on corruption error rate or clean error rate would be mis-
leading. The same could be said about the other two robust-
ness metrics. Thus, we believe it will be beneficial to use a
metric that takes into account all types of robustness when
training a model in order to obtain a more comprehensive
insight into how well a model performs. In our table, we

Table 1. Error Rates for clean, corrupted, and adversarial data for
DGCNN and PointNet models trained under various data augmen-
tation techniques. Avg. ER is the average of the three main ER,
which provides us a comprehensive view on its robustness.

simply take an average of the error rates as our performance
metric. However, we also believe a weighted average may
be better in different use cases of the point cloud classifier
so that the metric will emphasize the more important ro-
bustness metrics. Nonetheless, having a metric that captures
all robustness is important because no individual metric can
provide a full picture of the model performance.

• Insight 3: APGD has potential for achieving a more ro-
bust model

Table 1 demonstrates that our model adversarially trained
with APGD had the lowest average error rate. Since our
model was only trained for 50 epochs, we believe our
method has the potential to improve even further if we train
it for the standard 300 epochs. Furthermore, we believe
another model that is adversarially trained using APGD
could outperform our current model. For example, instead
of using DGCNN, we believe that there is potential for
APGD to perform really well in PCT (point cloud trans-
formers), which has shown to perform well against cor-
rupted datatypes [17].

Furthermore, from Figure 6, we can see that the loss val-
ues for DGCNN with APGD of iteration 15 is typically
lower than the other two models. This can be explained
how the APGD is able to generate a better adversarial exam-
ple with more iterations. This may indicate that adversarial
training with APGD with higher iteration number provides
a better result in adversarial robustness in the longer run
with more epochs. Thus, we believe it will be worthwhile
investigating the effects of different iteration numbers on
the overall error rates.

5. Discussion
In this section, we will go over open questions and future

work based on our findings. Then, we will also discuss the
key takeaways from our research.



5.1. Key takeaways

As a reminder, we offered the following insights:

• Insight 1: Corruption Robustness does not imply Adver-
sarial Robustness

• Insight 2: No one specific robustness metric gives a com-
prehensive view on the model performance

• Insight 3: APGD has potential for achieving a more ro-
bust model

Key takeaway: When training a model (specifically for,
but not limited to, point cloud classifiers), we encourage an
explicit focus on improving both corruption and adversar-
ial robustness since we cannot conclude that one guarantees
the other. We specifically proposed an adversarial training
method using APGD, but we encourage all further research
that attempts to increase all robustness against clean, adver-
sarial, and corrupted data.

5.2. Open Questions/Future work

Open Question 1: Does adversarial robustness imply
corruption robustness? From insight 1, we concluded cor-
ruption robustness does not imply adversarial robustness.
However, our observations may hint that the converse may
be true - a high adversarial robustness may imply a high
corruption robustness. However, we cannot conclude this,
as we only have data for a few examples that support this
ovservation. Thus, this is an area of future work. If we
determine that adversarial robustness implies corruption ro-
bustness, we can focus solely on addressing adversarial ro-
bustness instead of conducting a dual optimization for both
robustness metrics.

Open Question 2: What is the optimal iteration num-
ber for APGD in adversarial training point cloud classi-
fiers? To train our model, we used an APGD with an itera-
tion of 7 steps. When we increase the iteration numbers, we
typically can generate adversaries with a higher loss value.
Thus, if we apply APGD with higher iterations to adver-
sarial training, we expect to see higher adversarial robust-
ness. However, with higher adversarial robustness, there is
typically a trade-off in the clean robustness metric, and po-
tentially the corruption robustness. This would involve cre-
ating a heuristic for evaluating the different models based
on all these robustness metrics such as Avg. ER, and test-
ing many models with different APGD iteration numbers.
Though we would like to test different models ourselves,
we simply cannot test so many possible models since train-
ing a single model consumes a lot of time and resources.
Thus, we encourage further research to find a way to deter-
mine an optimal iteration number for APGD in adversarial
training point cloud classifiers.

Open Question 3: How can we modify advesarial
training to improve corruption robustness? From our

observations, adversarial training (with PGD and APGD)
is the only method we tested that is robust to corruption
and adversarial attacks. Furthermore, adversarial training
is often referred as one of the best way to defend against
adversarial attacks [5]. Then, naturally, we would want to
use adversarial training to train our point cloud classifiers.
However, adversarial training does poorly against certain
corruption types, such as occlusion, that are not similar to
adversarial examples. Thus, we encourage research on how
to increase those areas of corruption robustness when ap-
plying adversarial training.

6. Conclusion
This study has taken the first steps toward understanding

the relationship between corruption, adversarial, and clean
robustness in point cloud classifiers. Our findings reveal
that high corruption robustness does not necessarily trans-
late to high adversarial robustness. This insight is crucial
for the development of robust point cloud classifiers, espe-
cially in safety-critical applications like advanced driver as-
sistance systems. Thus, we emphasize the need for a holistic
view of model performance, taking into account various ro-
bustness metrics rather than relying on a single metric. Fur-
thermore, we introduced the approach of using Auto-PGD
(APGD) for adversarial training, which shows promising
results in achieving a balance between all metrics of ro-
bustness. Future work in this domain should explore the
potential of adversarial robustness as an indicator of cor-
ruption robustness, tune APGD parameters for training, and
refine adversarial training methods to enhance specific ar-
eas of corruption robustness. Overall, this study encour-
ages continued exploration and innovation in enhancing the
robustness of point cloud classifiers, which is essential for
their reliable deployment in real-world applications.
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