Counter Al Synthesis Paper

Masa Nakura
May 1, 2024

1 Introduction

Artificial Intelligence has become increasingly prevalent in our daily lives in various applications ranging
from spam mail detection to self-driving cars. As Al becomes more accessible to various users, trust becomes
a key factor in whether an Al-powered system is frequently used or not. User trust in AI models is influenced
by various factors such as the privacy of personal data, its performance given specific tasks, consistency in
varying situations, and even the explainability of Al alogrithms. Trust is especially crucial in safety-critical
situations such as assisted driving, where misjudgment involving pedestrians could cause significant damage.
In these cases, users will use Al technologies only if they can fully trust them. As such, advancements in
trusted Al would promote the further spread of Al applications by allowing users to feel comfortable with
Als that affect their daily lives.

This synthesis paper covers my exploration of counter-Al, a subfield of trusted Al In a world full of
artificial intelligence, one of the biggest threats would be the presence of adversaries, or attackers, who can
intentionally cause Al systems to misbehave. Thus, we seek the prevention of all possible attacks so that
users can always rely on Al systems. The study of counter-Al, also known as adversarial Al, deals with the
methodologies used by adversaries to degrade or manipulate Al systems. Given an understanding of different
attacks, our main objective is to build an Al model that is unaffected by these attacks. In particular, my study
was motivated by the following questions:

* Can Al be subverted/co-opted to perform sub-optimally or change its goal (from the goal it was sup-
posed to achieve)?

* How can we defend Al systems against being subverted or co-opted?

In this paper, I cover a detailed explanation of counter-Al to the extent to which I have explored and a
discussion about how this study has impacted my perspectives on Al

2 Counter Al

In this section, I will explain counter-Al at both high and technical levels. After introducing the various types
of attacks that adversaries often employ, I will highlight research efforts for defending against such adver-
saries. Finally, I introduce methods of standardizing how well Al models defend against known adversaries.
These standardization techniques are meant as an encouragement for further efforts to improve upon existing
defense strategies.

2.1 Types of Attack
2.1.1 Overview

The NIST Report on Adversarial Machine Learning by Alina Oprea and Apostol Vassilev [9] provides a
comprehensive overview of adversarial machine learning - especially how attacks are classified. First, attacks
are classified as having one of the following objectives: Availability Breakdown, Integrity Violation, and
Privacy Compromise. While availability attacks indiscriminately attempt to break the performance of Al
models at test time, integrity attacks target specific outputs or behaviors. In contrast to those attacks that
decrease a model’s performance, privacy attacks attempt to learn more information about an Al model or
training data that would otherwise be kept private. Further decomposition of the attack types is given in
Figure 1, which includes a detailed classification based on the objectives and the required capabilities of an
attacker.

Next, an attack can be classified by the information required to perform the attack. While a white-box
attack requires total information of a model such as the weights and training data, a black-box attack simply
relies on the model output given testing data. A grey-box attack is somewhere in between, such as simply
requiring knowledge about a model architecture but not the weights. A more detailed comparison between
white-box and black-box attacks is given in Table 1.

White-box Black-box

Attackers have complete knowledge Attackers have no prior knowledge
Attacker Access
about the target model about the target model
. . Known Weights, Network Architecture, Known confident scores, logits, or
Accessible information ..
Hyperparameters, Training Dataset, etc. output labels
Optimization methods with choices .
. p . . . Score-based attacks(scores/logits),
Attack Types for distance metrics, universal evasion attacks, ..
. . Decision-based attacks(labels)
physically realizable attacks.
. Easier to perform, more types of attacks. More practical, as essential model
Practical use
Can be used for attack transferring. information if often confidential.

Table 1: White-box vs Black-box attack comparison

Attacks that degrade a model’s performance can further be separated into Evasion and Poisoning attacks.
In an evasion attack, an adversary attempts to generate adversarial examples, which are testing samples whose
classification can be controlled by an attacker through minimal perturbations. While evasion attacks are
performed under testing time, poisoning attacks happen at the training stage, where training data or models
are intentionally changed (or *poisoned’) to break down the availability or integrity of the model.

In my study, I specifically focused on evasion attacks and the methods to mitigate their effect, which I
will explain in further detail in the following sections.

Clean-Label |
Model Poisoning Poisoning
\ .
e i

£ [
Energy-Latency i %_
- =
mA\.'aiIahIIIty g
&
?36& s
Tougu
Clean-Label | /9"’01“‘¢]5— — .
PO'SU”_L“Q | Data Poisaning
Evasion Clean-Label | /
s Badkdoor
NN
. Model
x\ ba t?,?.ﬁ: % Pulsonlng |
° J= - .
S A Black-Box
," B Integrity —5 Evasion
Tv’ er"n- -
,r / "}G.—-—
.
"os fonuod,
_,r T Reguett—
4/_ . Ta geh
rgeted
zf:o?_‘?:; Poisoning
A /] Model Extraction
querY ecegy I

Model
----- Privacy--=--
Data
S
Reconstruction;
| Memorization;

Membership Inferemce;
Property Inference;

Figure 1: Taxonomy of attacks on Al systems [9]. Each circle represents an attack objective, and the circular
outer layer represents the required capabilities an adversary needs. The callout represents the name of a
specific attack methodology.

2.1.2 Evasion Attacks - Threat Model

A threat model precisely defines the types of attacks an adversary employs, and it is a standard convention to
define the threat model at the beginning of any study. Specifically, the two attacks I introduce in the following
sections are white-box evasion attacks that utilize first-order gradient information for generating adversarial
examples. An evasion attack produces an adversarial example T by perturbing an original data z, such that
|Z — x||co < €, where € is the maximum allowed perturbation distance. For example, in the context of image
data in the ¢, distance metric, ¢ would be the largest change allowed in each pixel. Note that the distance
metric is most commonly ¢, but other metrics such as ¢5 can be used. When defining a threat model for
evasion attacks, this variable € is the most important variable. Because e defines how large a data point can
be perturbed, it defines how closely an adversarial example will look semantically compared to the original
image. For example, Figure 2 demonstrates the difference of point clouds that were perturbed using different
sizes € (each point in the point cloud was shifted by a maximum distance of €). Since the goal of evasion
attacks is to produce an example that is indistinguishable from the original class to a human eye, we would
want to find a good € such that it is still semantically similar to the original data but fools an Al model.

% e

al [;
HE S bt

Figure 2: (a) A point cloud of a chair from ModelNet40. This chair was perturbed using APGD (refer to
section 2.1.4) with (b) € = 0.1, (c) e = 0.25, (d) ¢ = 0.5. Under a standard DGCNN model for point clouds,
they were classified as (a) chair, (b) nightstand, (c) nightstand, and (d) plant

2.1.3 White-box Evasion Attack: PGD

Projected Gradient Descent (PGD) is an evasion attack methodology popularized by Madry et. al. [8]. Given
an e from the threat model, we can define the allowed perturbation of a specific data point x by an £, (or £3)
sphere of radius € around x. PGD is a first-order optimization method, where x is iteratively updated in the
direction such that the Loss function is maximized. In other words, it is an iterative variant of another evasion
attack called the Fast Gradient Sign Method(FGSM) that performs the update steps just once. Specifically,
FGSM calculates

T=x+esgn(V,L(0,x,y))

where the function L returns the loss function given weights 6, data x, and label y [8]. On the other hand,
PGD is simply an iterative variant such that

o H$+S(It + asgnV;cL(07 z, y))

where 2 is the perturbed data after ¢ iterations, IT, g is a function that projects an input to a region in the
allowed /. ball, and z" starts at a random point in the /., ball[8]. One key distinction between PGD and
FGSM is that FGSM perturbs the x by a distance of € in a single step, while PGD repeatedly takes a step of
size o toward a that maximizes the loss.

One obvious concern for PGD is the possibility of reaching a local maxima within the /., ball. However,
Madry et.al observed that PGD attacks over multiple runs with random restarts achieved a fairly consistent
resulting loss value, which signifies that PGD can almost always find an adversarial example with a ’good
enough’ loss. From this concentration phenomenon of the loss values, Madry et. al. also propose that a local
maxima significantly higher than the ones found by PGD is extremely hard to find using first-order methods;
even a large number of random PGD restarts failed to find an adversarial example with a significantly higher
loss value. Thus, Madry et. al.[8] claim that PGD is the "ultimate" and "universal" first-order optimization,
which becomes a useful proposition when training a model robust against attacks(section 2.2).

2.1.4 Another White-box Evasion Attack: APGD

Auto-Projected Gradient Descent(APGD) address three weaknesses of PGD: 1) A fixed step size does not
guarantee convergence of loss, and performance is highly dependent on the human-chosen step size «, 2)
loss plateaus quickly because PGD algorithm is agnostic of the number of iterations, and 3) PGD algorithm
is unaware of the current trend of the loss value[6]. Introduced by Croce & Hein, APGD addresses these
issues by automatically adjusting the step sizes based on the number of iterations left and on the success rate
of finding higher loss values given a specific step size [6]. APGD begins with a high step size to search for
a general area within the /..-ball that has the highest loss value. This is called the exploratory phase so that
APGD can locate a good starting point for further optimization. During this exploration phase, the algorithm
flags a checkpoint at which the loss value is the highest. When the step sizes decrease, the algorithm restarts
at the checkpoint with the highest loss to continue the search for an even higher loss. This phase with lower
step sizes is called the exploitation phase, where the algorithm attempts to squeeze out the highest possible
loss. Furthermore, APGD has scheduled checkpoint iteration numbers W = wq, wy, ..., w;, which are set at

pre-set percentages of the total iteration number. At these checkpoints, the step size is halved if either of the
following conditions are met:
Condition 1:
wj;—1
Y s <o (wj = wi)
i=w;—1

where f(i) is the highest loss value found in the first 7 iterations, and w; are the number of iterations at the
jth checkpoint. In other words, the lefthand side of the inequality counts how many times it achieved to find
an x that updated the running maximum of the loss value. If this number is less than the fraction p is the total
update steps between the two most recent checkpoints, we update the step size because the current step size
has failed to find a good loss value for enough time.

Condition 2:

p(0i=) = % and frd) = fad)

where f is still the highest loss value found in the first i iterations, and 7 is the step size at iteration w.
In other words, the step size updates if there has been no update in the running max of the loss function and
the step size since the previous checkpoint.

Thus, APGD addresses limitations 2 and 3 of PGD by taking into account the trend of loss values by
updating the step sizes using conditions 1 and 2 and by considering the total number of iterations through the
usage of checkpoints. Results have shown that APGD performs better than PGD in obtaining a higher Loss
value as well as obtaining a lower accuracy in different models[6]. Figure 3 shows a comparison between the
performances of PGD and APGD in image classification, where APGD almost always performs better than
PGD in both loss(higher) and accuracy(lower).

(Madry et al., 2018) (Zhang et al., 2019b)
MNIST - = 0.3 CIFAR-10- € = 8/255 MNIST - e = 0.3 CIFAR-10 - e = 0.031
0.35 T — . 0.30 I 2 1.19
0.30 /{/‘ - '—. S ST T o02s / 3 Fv;_i..'----;:;:::-_—.—_—_—_—,:
025 ,_"_ ''''''''''''''''''''''''' s - LawmmmTTTT 020 I,,:'-"):’,_t:'::'ii'— ———— rh) 7 |--step=¢/100
oz0f/ 3 o oo - -step=¢/25
4 b i : 01spr T - -step=¢/10
g oasp : b bl TR step=e/4
010} / 010y) I step=¢/2
0.05 b I :' :' vosh . : ! step=e/1

' step=2¢
0.00 70" 200 a0 eco 800 1000 090 0 200 400 600 800 1000
o 200 400 600 800 1000 o 200 400 600 800 1000

iterations iterations iterations iterations
100 453 i 100 58.0
' -
: b —N,, =25
= " = " TS _
g) 44.9 b " b st b _Nuer 50
g : b ! asp 5, N N, =100
51 = aas |t) hos 590l A
[+ T L - TN 569§ © [_Nter=200
2 TN [' Tl [< L
z b el X T Wl .oTizzzizzzizioa 3 "o, Nige =400
= e L L LT PY Y | R SR S ' B L
D gl T L 92 SRim : ssshﬂ . ‘ N, =1000
S S i . EEL =
436 90 358 .
0 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 [} 200 400 600 800 1000
iterations iterations iterations iterations

Figure 3: PGD with Momentum vs APGD[6]:best cross-entropy loss (top) and robust accuracy(bottom)
obtained as function iterations. Tested on two models by Madry et. al. (left)[8] and Zhang et. al. (right)[10]
for PGD with a momentum term a = 0.75 (dashed lines) with different fixed step sizes and APGD(solid
lines) with a different total number of iterations. APGD outperforms PGD with Momentum for every budget
of iterations in terms of loss.

Beyond the observation that APGD performs better than PGD in terms of both loss and accuracy, this
graph provides us an explanation about the behavior of APGD. In Figure 3, the APGD loss lines appear to
have occasional jumps that significantly increases the loss value. This can be explained by the transition to
a smaller step size . As explained before, APGD keeps track of a location in the ¢, ball with the highest
loss until a specified checkpoint w;. If the step size o decreases at checkpoint w; (if conditions 1 and 2
are satisfied), the algorithm backtracks to the location with the highest loss and continues to explore with
smaller step sizes. This causes a sudden spike in the best loss value found, as observed in the graph. This
behavior can be characterized as the transition from the exploration phase to the exploitation phase, where
a more specific neighborhood of perturbations with high loss is exploited every time the step size decreases.
I attempted to verify this explanation by replicating the loss graph from Figure 3. To do so, I edited the
AutoAttack source code[6], which included an implementation of APGD. I succeeded in creating a graph
that displayed the expected loss of the data batch for every iteration of applying a step of APGD. The result
can be seen in Figure 4. As expected, we observed jumps in the loss value when the step sizes decreased.

Expected Loss vs APGD Iteration

40
-
y 4
30 A /"
%]
[
o
)
el
g
o
(9]
o
X 20 1
10 A
| —— Batch: 0
01 Batch: 1
0 20 40 60 80 100

Iterations

Figure 4: Expected Adversarial Loss 2.3 of APGD-perturbed Cifar images on ResNet model. Expected loss
for different batches are shown on different lines. APGD was performed for 100 iterations, and the batch
size was 5. These numbers are significantly lower than the experiments from Figure 3, but this experiment
was modified to perform quickly on the CPU. The observations made will generally be consistent with higher
batch sizes and APGD iterations.

2.2 Towards Robustness Against Adversarial Attacks
2.2.1 Adversarial training overview

The main purpose of gaining a deeper understanding of the above attacks is to design methodologies to
mitigate their risks. One such methodology is adversarial training, proposed by Madry et. al. [8], where
the model learns to be robust against adversarial examples during the training phase. As above, we define
our specific threat model to be the {..-ball around any data point z. Now, let S be the set of all allowed
perturbations 4§, such that 4§ is included within the ¢,-ball. Given this threat model, the objective function
for adversarial training is as below[8].

mingp(6), where p(6) = E(,)~ p[maxsesL(0,x + 6,)]

This formulation of the objective function allows us to view the problem as a saddle point problem separated
into an inner maximization and an outer minimization. The inner maximization aligns with the goals of the
objective functions of PGD and APGD, as it aims to find a perturbation § such that the loss value of the
adversarial example is maximized. On the other hand, the outer minimization attempts to find the model
parameters, or weights, such that the expected loss is minimized for the strongest adversarial examples. The
outer minimization is similar to traditional training objectives as below:

mingp(e), where p(9> = E(z,y)wD[L(67 z, y)]

In this case, the difference between adversarial training and traditional training is simply whether the min-
imization objective finds the parameters for the loss of perturbed data points £ = x + § or of clean, in-
distribution data points x. As such, the objective of adversarial training specifies a clear goal of obtaining
the parameters such that the expected loss (population risk) is extremely low given an adversarial example.
When a model reaches this goal, it is adversarially robust and is not expected to be fooled by adversarial
examples.

2.2.2 Adversarial Training Implementation

To solve the inner maximization problem, we can directly employ Projected Gradient Descent, which con-
sistently succeeds in finding a high loss value. Because PGD is an ’ultimate’ and first-order optimization
attack, as explained in section 2.1.3, Madry et. al. suggest that robustness against PGD attacks guarantees

universal robustness against first-order attacks. This guarantee would provide us with a strong basis because
1) attacks relying on first-order information are most common for the current practice of deep learning, 2)
black-box attacks, which do not even use first-order information, will fall under the robustness guarantee, and
3) transfer attacks, which tend to perform worse than fully white-box first order attacks, also fall under the
guarantee. As such, PGD is commonly used as the methodology to solve the inner maximization problem,
so that the resulting model weights minimize the population risk against the "ultimate’ PGD attack and thus
form a universal robustness guarantee against common types of attacks.

Now that we have solved the inner maximization problem, the next logical step would be to find a gradi-
ent for the model parameters that solves this saddle point optimization question. However, the true descent
direction initially seems ambiguous, as the minimization and maximization optimization should happen si-
multaneously for data point x with model parameters §. However, Madry et. al. suggest that we could solve
the outer maximization problem sequentially after solving the inner maximization - Danskin’s theorem states
the gradients at inner maximizes correspond to the descent directions for a saddle point problem. Thus, if £
is the adversarial example obtained by PGD, the objective function for adversarial training is reduced to

mingp(0), where p(6) = E, ,)~p[L(0, Z,y)]

Thus, PGD can be thought of as a data augmentation method, where we train the model on the augmented .
However, unlike normal data augmentation, a new adversarial example must be generated for each x every
epoch, as the adversarial example that produces the highest loss will change every time the model parameters
are updated. Thus, adversarial training is simply a slightly modified implementation of traditional training
methodologies, where each data is perturbed (augmented) through PGD before every epoch.

2.3 Standardization

Beyond Adversarial Training [8], there have been many other research efforts to improve the robustness
of a model against adversarial examples. However, the evaluation metrics on these models are often non-
uniformed, which makes it difficult to compare different defense strategies. This calls for a standardized
metric that accurately and comprehensively measures the robustness of these models under evasion attacks.

2.3.1 AutoAttack

Introduced in the same paper as APGD, AutoAttack is an evaluation framework developed by Croce and Hein
[4]. AutoAttack contains an ensemble of attacks, including APGD, a targetted variant of APGD (APGD-T),
Fast Adaptive Boundary Attack (FAB)[5], and square attack[2]. The first three attacks are white-box - while
APGD and APGD-T attempt to find the adversarial example with the highest loss, FAB attempts to find an
adversarial example with the minimal norm of perturbation required for misclassification. Meanwhile, square
attack is a score-based black-box attack that is query-efficient and is known to have a good success rate.
This diversity of attacks within AutoAttack ensures that a classifier is tested comprehensively - even if some
attacks fail, AutoAttack will attempt another attack that may succeed. Furthermore, this diversity allows us to
understand a trend of vulnerabilities in some models - even if the average robustness against all four attacks is
the same for two different models, we may gain insight into the model’s tendency for vulnerability depending
on which attacks a model fails against. Beyond the diversity of the attacks, AutoAttack’s biggest trait is
that it is parameter-free. When researchers evaluate a model’s robustness against adversaries, there are often
parameters that can be chosen for the attacks. This could cause an inconsistency in the adversarial robustness
evaluations because the models would be tested against different attacks. Thus, AutoAttack provides a truly
standardized method for evaluation.

From the experiments conducted by Croce and Hein, we observe that AutoAttack seems like a compre-
hensive evaluation technique. Using AutoAttack, they re-evaluated a variety of "adversarially robust’ models
with a reported robustness accuracy from their respective papers. The final robustness accuracy reported by
AutoAttack was almost always lower or around the same compared to the reported accuracy, which showed
that AutoAttack was a stricter(and thus most extensive) evaluation metric than the various evaluation metrics
initially used.

A possible concern for standardized usage of AutoAttack is the overadaption of new defenses to AutoAt-
tack. This would cause us to overestimate the true robustness of a model if the model performs well against
AutoAttack but not against other attacks such as an adaptive attack, where there is a real-time adaption of
the attack (and thus adapted attacks cannot be standardized). To prevent this overadaption, yet encourage
the development of models with higher robustness against AutoAttack, Croce and Hein hosted an online
leaderboard called the RobustBench [4]. In this leaderboard, models are first ranked in terms of their per-
formance against AutoAttack. However, it also reports the *best known robust accuracy’ which reports the
lowest known robustness accuracy against an attack outside of AutoAttack. With these two robustness met-
rics, Croce and Hein encourages external researchers to improve adversarial robustness techniques while
creating better adaptive attacks such that the model will perform much worse than against AutoAttack. Cur-
rently, most models on the leaderboard have around AutoAttack accuracy and best-known robust accuracy,
which shows how AutoAttack is mostly a comprehensive evaluation metric fit for standardized use. However,
there is currently a single model on the leaderboard that has a significant difference in the two metrics (best
known robust metric is 7.08% lower). This serves as either an encouragement for a search for an even better
standardization metric or a reminder that a single standardization metric may never be fully trusted.

2.3.2 Evaluation metrics

In Table 2 below, I summarize common evaluation metrics. I encourage the use of these terminologies to

ensure consistency when evaluating models. For explanations on the notations in table 2, refer to Table 3.

Metric Symbol Definition/Equation Relations Objectives
The accuracy of a standard classifier on clean data
N
Clean Accuracy a a = eval(fge, D) = Zj:1jlvc]::yj i max(a)
where ¢; = foe(x;), z; € D¢ and N = |D°|
The accuracy of a standard classifier on attacks.
N ca .
ca Do le,=—y, a®® < a. Let Attacker:
Attacked Accuracy a a® = eval(fye, D*) = W, 51 =a—a“ > 0. max(8,)
where ¢; = fpe(z;), z; € D* and N = |D?|
The accuracy of an adv. trained classifier on a®° < a. Let
clean data. = a— a0
ac N 1=a— . c
Robust Clean Accuracy a 4 = eval(fyn, D°) = ijl j — Ideally, a® < o max(a®)
) b d 5
where ¢; = foe(x;), x; € D¢ and and N = |D¢| and o1 > €
The accuracy of adv. trained classifier a” > a“®. Let
on non-adaptive attacks. 0o =a” —a® > 0. min(eq)
Robust Accuracy a” Z;V: 1le——y, 01 > do. Ideally, min(ey)
a" = eval(f(’”aDa) = do > €1. Let max(dz)
where ¢; = fpa(x;), x; € D* and N = |D?| €2 = |a" —a*°| > 0.
The accuracy of an adv. trained classifier
Best Known on the worst possible attack.
B N ca B < 47 : r__ B
Robust Accuracy a aB = eval(fge, D) = %’ a™ <a” <a min(a a”).
where ¢; = fpe(x;), x; € D*®, and N = |D*|
Loss value (measure of unhappiness in scores)
Clean Loss Le in standard classfiers. ming (L¢)
Le = LatGD“ (9a z, y)
Loss value when input is adversarial.
. Loss value of inner optimization for Eq 2.1
a a c R a
Adversarial Loss L L% = Lyouse e (6, 2%, y), where 2990 = 4 & L*> L maxs(L?%).
s.t.xz € Dand § € S, where S is a threat model.
Loss value of outer optimization for Eq 2.1
Adversarial Training Loss | L% L = p(0) = E(; y)~p[maxsesL(0,z + 0, y)] ming (L).

= ﬁ Z‘j@l maxses(L§), where p is from Eq. 2.1.

Table 2: Evaluation Metrics

Notation Definition
foe A classifier trained normally
foa An adversarially-trained classifier
De Clean, in-distribution data
D? Adversarially perturbed data (non-adaptive attack)
Dee Adpversarially perturbed data using adaptive attacks

eval(f, D) Function to evaluate classifier f on given data D. (Mathematically defined in row 1 of table 1)
Lyep(6,2,y) Standard Loss function given a single input, its correct label, and network parameters.
Eq. 2.1 mingp(6), where p(0) = E(, ,)~p[maxsesL(0,z + 9,y)]

Table 3: Notations

3 Personal Impacts

Studying counter Al over this quarter had a major impact on my academics and my social views. Furthermore,
counter-Al added an extra layer of complexity to my knowledge of Al, which allows me to think critically
when considering real-world applications. In this section, I would like to cover in detail how this research
experience impacted me over this quarter.

3.1 Academics

This research experience most noticeably enriched my academic experience even inside the classroom. Par-
ticularly, it impacted my understanding of the materials in CSE 493G1: Deep Learning. As this was my first

quarter taking an artificial intelligence-related class, I learned ’vanilla’ machine learning algorithms concur-
rent with counter-Al topics from guided research. This was truly a mind-expanding experience since I was
constantly able to connect between the new ideas I learned in class and the Counter-Al research. Comparing
and studying the differences between the objective functions of adversarial training and vanilla training, as
discussed in section 2.2.1, is one such example. Another example was making connections between the gra-
dient of the Loss with respect to the weights/parameters to update the model, in contrast to the gradient of the
Loss with respect to the data point x to obtain an adversarial example. Because these comparisons required
attention to minor details, they allowed me to learn the material at a deeper level than if I were to take the
class by itself. This alone demonstrates how the study on counter-Al enriched my classroom experience.

Beyond classroom material, Counter-Al also influenced my final project for CSE 493G1. In my project,
I investigated the relationship between corruption and adversarial robustness of point cloud classifiers of var-
ious models and further attempted to train a model that improved on both robustness metrics. While the
corruption robustness of point cloud classifiers was measured using a pre-corrupted dataset of point clouds, I
measured the adversarial robustness using AutoAttack, which I described in Section 2.3.1. Since AutoAttack
was made specifically for image classification tasks, my tasks involved modifying the AutoAttack source code
to create adversarial examples for point clouds. After measuring both of these robustness metrics and analyz-
ing their relationship, my next goal was to train a model to improve both robustness by employing adversarial
training(Section 2.2) using APGD(Section 2.1.4 to solve the inner maximization problem. Adversarial train-
ing using APGD diverged from traditional methods of using PGD, but I hypothesized that it would perform
better in terms of adversarial robustness because APGD succeeds in obtaining a higher lass value, meaning
it solves the objective function more optimally. Furthermore, since a high adversarial robustness seemed to
imply a high corruption robustness based on our previous analysis, we hoped our new adversarially trained
model using APGD would achieve a higher dual robustness. Though our methodology showed the potential
of adversarial training using APGD as a method for improving corruption and adversarial robustness, we
identified several open discussions that we would want further insight into. A more detailed explanation of
our project can be viewed in this paper in the following URL, which I have also uploaded onto the Counter-Al
Dropbox, https://www.overleaf.com/read/dmbpgnxgmxpg#5365£fd.

3.2 Social Views

Two of the biggest concerns as more Al-powered services and products become more accessible to society are
the safety/integrity of Al and its privacy of personal information. As a part of my research in Counter-Al, I
investigated the recent executive order by Joe Biden on "Safe, Secure, and Trustworthy Development and Use
of Artificial Intelligence" [1], which demonstrated the urgency and importance of safety for real deployment
of AL Through this investigation, I gained a new perspective that is completely different from what we learn
in a deep-learning classroom environment, where we typically only care about the performance of a model
in a controlled setting. I learned that what is equally important to performance is the trust of the consumers,
so that everyone can comfortably coexist with artificial intelligence. This realization further motivates me to
continue research in counter-Al and support regulations that ensure Al safety such as through standardized
methods discussed in Section 2.3.

In the same executive order, President Biden also addressed the issue of artificial intelligence potentially
displacing workers. A couple of weeks ago, near the CSE Gates Building, I saw a poster that called for
the stop of the development of artificial intelligence in fear of job displacement. Though the poster’s call to
stop Al development is extreme, this experience allowed me to realize the importance of social policies that
mitigate harm to workers while maximizing the benefits of Al for workers. After all, as mentioned in the
previous paragraph, the trust of the people in artificial intelligence is what will invigorate the further usage of
Al among consumers, and thus encourage further developments.

3.3 Real World Applications

After learning about counter-Al, a natural thought process that comes to mind for me when dealing with
Al models is to identify their potential vulnerabilities. For example, can we fool vision language models
like LLaVas by generating adversarial images? View private training data from ChatGPT - large language
models? Steal private model information such as model architecture and weights from common AI APIs, and
apply white-box attacks based on the stolen information? These thoughts are not only entertaining thought
experiments but can also be critical when identifying vulnerabilities of new Al systems that are planned to be
deployed in the real world.

One example of a recent innovation that I went through the thought experiment is a smart speaker robot
swarm that can mute different spatial areasm developed by a group of researchers at the University of Wash-
ington [7]. This swarm microphone employs a neural network that intakes multiple time-shifted audio signals
aligned for a given location of interest, where the channel size of the data is the number of robots (number
of audio signals). The neural network outputs a speech signal of a target speaker in the input location, essen-
tially muting every other captured audio. Given this neural network, I particularly focused on the possibility
of generating adversarial examples if the adversary has white-box access to the model and can edit the input
audio signals. Since the neural network depends on the time interval differences of audio from the specified
location to arrive at different robot microphones, adding a perturbation at time intervals where the delay oc-
curs would cause the neural network to be unable to locate the targetted speaker. Using adversarial example
generation techniques discussed by Carlini & Wagner for the audio domain [3], we could potentially add a
small perturbation on the audio such that we can pretend a person is closer to a different robot in the room.

https://www.overleaf.com/read/dmbpqnxgmxpq#5365fd

This perturbation would be inaudible to a human ear but could fool the neural network. If this attack is suc-
cessful, it would be a severe privacy and integrity concern for this robot swarm because it could remove a
person from the conversation or listen to another person who would otherwise be muted. This demonstrates
that the ability to think critically about real-world Al applications in terms of their vulnerabilities can be
crucial, as these risks could be mitigated before deployment. Hence, this ability is one of the most important
skills T gained after conducting guided research in counter-Al

4 Conclusion

Through my research on Counter-Al, I explored the two motivation questions from the introduction by specif-
ically studying PGD and APGD evasion attacks and also by studying adversarial training, which defends
models against these attacks. I also studied AutoAttack, which provided a standardized evaluation frame-
work for image classification models by providing a comprehensive ensemble of parameter-free attacks(and
thus free of human biases). In light of the numerous research efforts in creating adversarially robust mod-
els, I encourage the usage of standardized evaluation frameworks such as AutoAttack and also the usage of
evaluation metrics described in my table in Section 2.3 for consistency purposes. Beyond gaining insight
into Counter-Al that answered my motivation questions, I gained new perspectives that further enriched my
academically and socially. Research in Counter-Al not only allowed me to gain a deeper understanding of the
material in Deep Learning but also provided me with creative ideas for my final Project. Furthermore, investi-
gating counter-Al and its impact on the world such as through President Joe Biden’s executive order allowed
me to develop a more mature social view of Al safety regulations and policies to help possibly displaced
workers. Finally, by studying counter-Al, I developed critical thinking concerning possible Al vulnerabili-
ties. This is something I would not have even considered if I had just taken Machine Learning/Deep Learning
classes, but is crucial for mitigating risks for Al deployment in the real world. All in all, this research experi-
ence enriched my education and expanded my perspectives, which further motivates me to continue pursuing
research in counter-Al

References

[1] Exec. order no. 14110, 88 fed. reg. 75191, 2023. 8

[2] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein. Square attack: a query-efficient black-box adversarial
attack via random search, 2020. 6

[3] N. Carlini and D. Wagner. Audio adversarial examples: Targeted attacks on speech-to-text. In 2018 IEEE Security
and Privacy Workshops (SPW), 2018. 8

[4] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammarion, M. Chiang, P. Mittal, and M. Hein.
RobustBench: a standardized adversarial robustness benchmark. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021. 6

[5] F. Croce and M. Hein. Minimally distorted adversarial examples with a fast adaptive boundary attack, 2020. 6

[6] F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free
attacks. In H. D. IIT and A. Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 2206-2216. PMLR, 13-18 Jul 2020. 3, 4

[7] M. Itani, T. Chen, T. Yoshioka, and S. Gollakota. Creating speech zones with self-distributing acoustic swarms.
Nature Communications 14, 14(5684), 2023. 8

[8] A.Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning Representations, 2018. 3,4, 5,6

[9] A. Oprea and A. Vassilev. Adversarial Machine Learning: A Taxonomy and Terminology of Attacks and Mitiga-
tions. Technical Report NIST Artificial Intelligence (AI) 100-2 E2023 (Draft), National Institute of Standards and
Technology, Mar. 2023. 1, 2

[10] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. Theoretically principled trade-off between

robustness and accuracy, 2019. 4

	Introduction
	Counter AI
	Types of Attack
	Overview
	Evasion Attacks - Threat Model
	White-box Evasion Attack: PGD
	Another White-box Evasion Attack: APGD

	Towards Robustness Against Adversarial Attacks
	Adversarial training overview
	Adversarial Training Implementation

	Standardization
	AutoAttack
	Evaluation metrics

	Personal Impacts
	Academics
	Social Views
	Real World Applications

	Conclusion

